0.8®, Low-Voltage, Single-Supply, Dual SPDT
 Analog Switch

General Description

The MAX4736 is a low on-resistance, low-voltage, dual single-pole/double throw (SPDT) analog switch that operates from a single 1.6 V to 3.6 V supply. This device has fast switching speeds (tON $=25 \mathrm{~ns}$, toFF $=20 \mathrm{~ns}$ max), handles Rail-to-Rail ${ }^{\circledR}$ analog signals, and consumes less than $4 \mu \mathrm{~W}$ of quiescent power. The MAX4736 has break-before-make switching.
When powered from a 3V supply, the MAX4736 features low 0.8Ω (max) on-resistance (RON), with 0.2Ω (max) RON matching and 0.1Ω Ron flatness. The digital logic input is 1.8 V CMOS compatible when using a single 3V supply.
The MAX4736 has one normally open (NO) switch and one normally closed (NC) switch, and is available in 12pin QFN and 10-pin $\mu \mathrm{MAX}$ packages.

Applications

Power Routing

Battery-Powered Systems
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
PCMCIA Cards
Cellular Phones
Modems
Hard Drives
Pin Configurations/Functional Diagrams/Truth Table

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
\qquad Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

0.8 Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)
$\mathrm{V}+, \mathrm{IN}^{2}$
NO NC (Note 1)
1) ...
-0.3 V to +4 V
COM_, NO_, NC_ (Note 1)-0.3V to (V+ + 0.3V)
Continuous Current COM_, NO_, NC
\qquad $\pm 150 \mathrm{~mA}$
Continuous Current (all other pins)
\qquad .$\pm 20 \mathrm{~mA}$
Peak Current COM_, NO_, NC_
(pulsed at $1 \mathrm{~ms} \mathrm{10} \mathrm{\%} \mathrm{duty} \mathrm{cycle)}$ $\pm 300 \mathrm{~mA}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
10-Pin $\mu \mathrm{MAX}$ (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 444 mW
12-Pin QFN (derate $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1176 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature
$+150^{\circ} \mathrm{C}$
Storage Temperature Range
\qquad $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)... $+300^{\circ} \mathrm{C}$

Note 1: Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS-Single 3V Supply

$\left(\mathrm{V}+=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}_{+}=3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2,3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM_, V_{NO}, VNC_			0		V+	V
On-Resistance (Note 4)	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC- }}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.6	0.8	Ω
			TMIN to TMAX			1	
On-Resistance Match Between Channels (Notes 4, 5)	$\Delta \mathrm{RoN}$	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.1	0.2	Ω
			TMIN to $\mathrm{T}_{\text {MAX }}$		0.3		
On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \\ & \mathrm{I}^{\text {com_ }}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_- }}=1 \mathrm{~V}, 1.5 \mathrm{~V}, 2 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.05	0.1	Ω
			TMIN to TMAX		0.2		
NO_ or NC_ Off-Leakage Current (Note 10)	$\begin{aligned} & \text { INO_ (OFF), } \\ & \text { INC_ (OFF) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC- }}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	± 0.002	+1	nA
			TMIN to TMAX	-5		+5	
COM_ On-Leakage Current (Note 10)	ICOM_(ON)	$\begin{aligned} & V_{+}=3.6 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\text {COM }}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO_ or }} \mathrm{V}_{\text {NC- }}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {, or } \\ & \text { floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2	± 0.002	+2	nA
			TMIN to TMAX	-10		+10	

0.8 , Low-Voltage, Single-Supply, Dual SPDT Analog Switch

ELECTRICAL CHARACTERISTICS—Single 3V Supply (continued)

$\left(\mathrm{V}+=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{I H}=1.4 \mathrm{~V}, \mathrm{~V}_{I L}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}+=3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=1.5 \mathrm{~V}$; $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ Figure 1	$+25^{\circ} \mathrm{C}$		20	25	ns
			$\mathrm{T}_{\text {MIN }}$ to TMAX			30	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{2},} \mathrm{~V}_{\mathrm{NC}}^{-} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{~V} F \end{aligned}$ Figure 1	$+25^{\circ} \mathrm{C}$		15	20	ns
			TMIn to TMAX			25	
Break-Before-Make (Note 7)	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}^{-} \\ & =1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \end{aligned}$$\text { Figure } 2$	$+25^{\circ} \mathrm{C}$		5		ns
			TMIN to TMAX	1			
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, R G E N=0, \\ & C_{L}=1.0 n F, \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		60		pC
NO_ or NC_ Off-Capacitance	CofF	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		33		pF
COM_ Off-Capacitance	CCOM(OFF)	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		60		pF
COM_ On-Capacitance	CCOM(ON)	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		85		pF
-3dB On-Channel Bandwidth	BW	Signal $=0$, RIN $=$ ROUT $=$ $50 \Omega, C L=5 p F$, Figure 5			130		MHz
Off-Isolation (Note 8)	VISO	$f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=$ $50 \Omega, C_{L}=5 p F$, Figure 5	$+25^{\circ} \mathrm{C}$		-52		dB
Crosstalk (Note 9)	$V_{\text {CT }}$	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C O M}=1 V_{P-P}, R_{L}= \\ & 50 \Omega, C_{L}=5 \mathrm{pF}, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-78		dB
Total Harmonic Distortion	THD	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{COM}}= \\ & 2 \mathrm{VP}_{\mathrm{P}-\mathrm{P}, \mathrm{R}_{\mathrm{L}}=32 \Omega} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.018		\%
LOGIC INPUT (A_, IN_)							
Input Logic High	V_{IH}			1.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.5	V
Input Leakage Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or 3.6 V		-1	+0.005	+1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range	V+			1.6		3.6	V
Positive Supply Current	I+	$\mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{I N_{-}}=0 \text { or } \mathrm{V}_{+},$ all channels on or off			0.006	1	$\mu \mathrm{A}$

0.8』, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

ELECTRICAL CHARACTERISTICS—Single 1.8V Supply

$\left(\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{I H}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{C O M}$, V_{NO}, V_{NC}			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \text { ICOM_ }=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { o or } \mathrm{V}_{\mathrm{NC}_{-}}=1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.5	2	Ω
			TMIN to TMAX			3	

SWITCH DYNAMIC CHARACTERISTICS

Turn-On Time	ton	$\mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_- }}=1 \mathrm{~V} \text {; }$ $R \mathrm{~L}=50 \Omega, C_{L}=35 \mathrm{pF},$ Figure 1	$+25^{\circ} \mathrm{C}$	25	30	ns
			TMIN to TMAX		35	
Turn-Off Time	tofF	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_ }}=1 \mathrm{~V}$; $R L=50 \Omega, C L=35 p F$, Figure 1	$+25^{\circ} \mathrm{C}$	18	25	ns
			TMIN to TMAX		28	
Break-Before-Make (Note 7)	$t_{\text {BBM }}$	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}$; $R_{L}=50 \Omega, C L=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$	7		ns
			TMIN to TMAX	1		
Charge Injection	Q	$\begin{aligned} & \text { VGEN }=0, \text { RGEN }=0, \\ & C L=1 n F \text {, Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$	35		pC
Off-Isolation (Note 8)	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, V_{N O}=V_{N C_{-}} \\ & =1 V_{P-P}, R_{L}=50 \Omega, \\ & C_{L}=5 p F, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-52		dB
Crosstalk (Note 9)	$V_{C T}$	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C O M}=1 V_{P-P}, \\ & R_{L}=50 \Omega, C_{L}=5 p F, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-78		dB
LOGIC INPUT (IN_)						
Input Logic High	V_{IH}			1		V
Input Logic Low	$\mathrm{V}_{\text {IL }}$				0.4	V
Input Leakage Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or 3.6 V			1	$\mu \mathrm{A}$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
Note 3: $-40^{\circ} \mathrm{C}$ specifications are guaranteed by design.
Note 4: RON and \triangle RON matching specifications for QFN packaged parts are guaranteed by design.
Note 5: $\quad \Delta \operatorname{RON}=\operatorname{RON}(\mathrm{MAX})-\operatorname{RON}(\mathrm{MIN})$.
Note 6: Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: Guaranteed by design.
Note 8: Off-Isolation = 20 $\log _{10}\left(\mathrm{~V}_{\text {COM_ }} / \mathrm{V}_{\text {NO__ }}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to OFF switch.
Note 9: Between two switches.
Note 10: Leakage parameters are 100% tested at hot temperature and guaranteed by correlation at room.

0.8 , Low-Voltage, Single-Supply, Dual SPDT Analog Switch

 Typical Operating Characteristics($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TURN-ON/OFF TIME vs. SUPPLY VOLTAGE

ON-RESISTANCE
vs. VCOM AND TEMPERATURE

SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE

ON/OFF-LEAKAGE CURRENT vs. TEMPERATURE

LOGIC-LEVEL THRESHOLD
vs. SUPPLY VOLTAGE

0.8』, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Typical Operating Characteristics (continued)

$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN		NAME	
$\boldsymbol{\mu}$ MAX	QFN		
1	12	FUNCTION	
2	1	NO1	Digital Control Input Switch 1
3	2	GND	Ground
4	3	NO2	Analog Switch 2-Normally Open Terminal
5	4	IN2	Digital Control Input Switch 2
6	5	COM2	Analog Switch 2-Common Terminal
7	7	NC2	Analog Switch 2-Normally Closed Terminal
8	8	V+	Positive-Supply Voltage Input
9	9	NC1	Analog Switch 1-Normally Closed Terminal
10	11	COM1	Analog Switch 1-Common Terminal
-	6,10	N.C.	No Connection

0.8 , Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Detailed Description

The MAX4736 is a low $0.8 \Omega \max ($ at $\mathrm{V}+=2.7 \mathrm{~V}$) onresistance, low-voltage, dual SPDT analog switch that operates from a 1.6 V to 3.6 V single supply. CMOS switch construction allows switching analog signals that range from GND to $\mathrm{V}+$.
When powered from a 2.7 V supply, the 0.8Ω max RON allows high continuous currents to be switched in a variety of applications.

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings; stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence $\mathrm{V}+$ on first, followed by NO_{-}, NC_{-}, or COM_{-}. Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the $V+$ supply to other components. A $0.1 \mu \mathrm{~F}$ capacitor, connected from $\mathrm{V}+$ to $G N D$, is adequate for most applications.

Logic Inputs

The MAX4736 logic inputs can be driven up to 3.6 V , regardless of the supply voltage. For example, with a 1.8 V supply, IN_ can be driven low to GND and high to 3.6 V . Driving $\mathrm{IN}_{\text {_ }}$ rail-to-rail minimizes power consumption.

Analog Signal Levels
Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in onresistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be used as either inputs or outputs.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

Figure 1. Switching Time

0.8』, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Figure 2. Break-Before-Make Interval

Figure 3. Charge Injection

Chip Information
TRANSISTOR COUNT: 379
PROCESS: CMOS

Figure 4. Channel Off/On-Capacitance

0.8 8 , Low-Voltage, Single-Supply, Dual SPDT Analog Switch

OFF-ISOLATION $=20 \log \frac{V_{\text {OUT }}}{V_{\text {REF }}}$
$O N-L O S S=20 \log \frac{V_{\text {OUT }}}{V_{\text {REF }}}$
CROSSTALK $=20 \log \frac{V_{\text {OUT }}}{V_{\text {REF }}}$

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_OR NC_ TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED

Figure 5. On-Loss, Off-Isolation, and Crosstalk

0.8日, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES

1. DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM (. 012 INCHES MAXIMUM)
2. DIMENSIONING \& TOLERANCES CONFORM TO ASME Y14.5M. - 1994.
3. N IS THE NUMBER OF TERMINALS.

Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION
Ne IS THE NUMBER OF TERMINALS IN γ-DIRECTION.
DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP.
5. THE PIN \#1 IDENTIFIER MUST EXIST ON THE TOP SURFACE OF THE
6. EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
7. ALL DIMENSIONS ARE IN MILLIMETERS.
B. PACKAGE WARPAGE MAX 0.05 mm .
a APPLED FOR EXPOSED PAD and terminals
EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.
10. meETS JEDEC MO22O
11. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES) and to saw singulation (straight sides) qFN styles.

0.8 , Low-Voltage, Single-Supply, Dual SPDT
 Analog Switch

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO187.

